NEW SECURITY ALGORITHM FOR MOBILE ADHOC NETWORKS USING ZONAL ROUTING PROTOCOL

G. Varaprasad¹, S. Dhanalakshmi², M. Rajaram³
¹Department of Computer Science and Engineering, B.M.S. College of Engineering, Bangalore, India.
²Department of Computer Applications, Dr. Mahalingam College of Engineering and Technology, Pollachi, India
³Department of EEE/ECE, Thanthai Periyar Govt. Institute of Technology, Vellore, India.

ABSTRACT
Mobile adhoc network is a special kind of wireless networks. It is a collection of mobile nodes without having aid of establish infrastructure. In mobile adhoc network, it is much more vulnerable to attacks than a wired network due to its limited physical security, volatile network topologies, power-constrained operations, intrinsic requirement of mutual trust among all nodes in underlying protocol design and lack of centralized monitoring and management point. The main aim of this work is to provide secure data transmission between the source and destination. The simulation is carried out for different number of mobile nodes using network simulator with the help of 1000 mobile nodes. We have compared this model with the existing models such as DSR and AODV. This model has shown the better results in terms of packet delivery, packet drop, and delay. The proposed model has dropped 19% of the packets even if network has five malicious nodes.

Keywords: MANET, ZRP, security, mobility, route.

1. INTRODUCTION

In recent years, Mobile Adhoc Network(MANET) has received marvelous attentions due to self-design, self-maintenance, and cooperative environments. In MANET, all the nodes are mobile nodes and the topology will be changed rapidly. The structure of the MANET is shown in Figure 1. Here, the mobile devices such as PDAs and laptops are used to route the data packets. In MANET, all the nodes are actively discovered the topology and the message is transmitted to the destination over multiple-hop[1]. Usually, the endpoints and routers are indistinguishable in MANET[2]. It uses the wireless channel and asynchronous data transmission through the multiple-hop. The vital characteristics of MANETs are lack of infrastructure, dynamic topology, multi-hop communication and distributed coordination among all the nodes.

The end-nodes are enabling QoS such as end-to-end delay, packet-loss, throughput and secure data transmission[2]-[3]. The potential deployment of MANETs exists in many scenarios, for example in situations where the infrastructure is not feasible such as disaster relief and cyclone, etc. The MANETs have potential of realizing a free, ubiquitous, and Omnidirectional communication[3].

The wireless channels can be accessible for both legitimate users and malicious users. In such environment, there is no guarantee that a route between the two nodes will be free for the malicious users, which will not comply with the employed protocol. The malicious users will attempt to harm the network operations. The primary focus of this work is to provide secure data transmission between the mobile nodes. Rest of the paper is organized as follows. Some of the existing models are presented in section 2.
Section 3 presents the proposed model and its functions. Simulation of proposed model is discussed in section 4. Results of this model are presented in section 5. Finally, section 6 presents the conclusions and future work.

2. EXISTING WORK

The secure routing algorithms in wireless communication are addressed and have been suggested for increasing the security levels[4]. However, these algorithms are unable to protect the network from attackers, who acquired the key information[5]. J.Li et al [6] proposed a common key encryption mechanism for MANETs using Dynamic Source Routing(DSR). Drawback of this model is that it dropped more packets even if the network had few malicious users[7]. Adhoc On-Demand Distance Vector(AODV), which is used to provide secure and reliable data transmission over the MANETs[8]. Several strategies are used to detect the non-cooperate nodes while forwarding the data packets to the destination[9]. In[10], authors discussed a trusted approach to establish the communication between the mobile users. Here, the communication takes place based on the watch dog. The trusted values are represented from -1 to +1.

A black hole attack is a kind of denial of service where a malicious node can attract all packets by falsely claiming a fresh route to the destination and then absorb them without forwarding them to the destination[11]. Smith et al[12] examined the routing security of distance vector protocols in general and developed countermeasures for vulnerabilities by protecting both routing messages and routing updates. They propose sequence numbers and digital signatures for routing messages and updates as well as including predecessor information in routing updates.

3. PROPOSED MODEL

This model presents a secure communication between the mobile nodes. A scenario of data transmission between the two mobile nodes has been considered. Whenever a source wants to transmit the data packets to the destination, it ensures that the source is communicating with real node via the cluster head. The authentication service uses a key management to retrieve the public key, which is trusted by the third party for identification of the destination. The destination also used similar method to authenticate the source. After execution of the key management module, a session key is invoked, this is used by both source and destination for further communication confidentially. In this way, all the important messages are transmitted to the destination.

3.1 Routing protocol

The paths are maintained as long as source needs. Here, we use sequence numbers to maintain the up-to-date information. The routing information has been updated using Route Request RREQ packet. If the source wishes to communicate with destination, for which it does not have a path, then it broadcast the RREQ packet to the network. After receiving, the intermediate node will broadcast a Route Reply(RRE) packet. If the RREQ packet has already processed, then it will be discard. The proposed model uses Zonal Routing Protocol(ZRP). Here, each node proactively maintains a set of possible routes within the region. Knowledge of each region is learned by the ZRP to improve the network performance efficiency. The DSDV is used to learn about nodes within the region. In order to find the routes for nodes, which are out-of-region and DSR is used.

4. SIMULATION

This model has considered an area of 1000mX1000m with a set of mobile nodes placed randomly and broadcast range is 150m. The simulation was carried out for different number of nodes using Network Simulator(NS2). The node mobility is simulated with a velocity of 0-20m/s. It sends 30000CBR packets approximately and the simulation parameters are shown in Table I. The performance metrics are packet-delivery ratio, throughput and control message packet.

<table>
<thead>
<tr>
<th>Table I. Simulation parameters.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Simulation time</td>
</tr>
<tr>
<td>Topology size</td>
</tr>
<tr>
<td>No. of nodes</td>
</tr>
<tr>
<td>No.of clusters</td>
</tr>
<tr>
<td>No.of cluster heads</td>
</tr>
<tr>
<td>No. of malicious nodes</td>
</tr>
<tr>
<td>Node mobility</td>
</tr>
<tr>
<td>Transmission range</td>
</tr>
<tr>
<td>Routing protocol</td>
</tr>
<tr>
<td>Frequency</td>
</tr>
</tbody>
</table>
Channel capacity | 2Mbps
Traffic type | CBR
CBR packet size | 512 bytes
Number of packets | 30000
Simulator | NS2
Communication system | IEEE802.11g
Pause time | 1s
Mobility model | Random way
Total packets | 30000

5. SIMULATION RESULTS

Here, we consider 250 mobile nodes (5 malicious nodes) and 3 cluster heads, number of data packets sends between 5-20 packets/s, and each node moves with 8 m/s. We have executed our model with different arrival of rates of packets for 20times. The simulation results are shown in Figure 2. From the results, we conclude that AODV protocol is delivered around 72% of the packets, while proposed model delivers 60%. For 5 malicious nodes, the proposed model delivers 51% of the packets due to packet loss caused, during the detection phase, i.e., after a malicious node has launched attacker yet before it is finally isolated, whereas AODV and DSR protocols have transmitted with 40% and 35% of the packets respectively.

Figure 2. No. of malicious nodes versus packets deliver ratio.

Figure 3 shows the number of data packets dropped by the malicious nodes, as total number of data packets is transmitted by the source. Here, we have considered 125 nodes (5 malicious nodes), 2 cluster heads, and number of packets sends between 0-80 packets/s and each node moves constantly with 2 m/s. In DSR model, 47% of the packets are caused by the malicious nodes, while AODV protocol has caused with 39% and the proposed model with 19% of the packets.

Figure 3. Number of malicious nodes against packet dropped.

6. CONCLUSIONS AND FURTHER RESEARCH WORK

There are various MANET protocols proposed by the subject to a variety of attacks through the modifications or fabrications of routing message or impersonations of other nodes. It allows the attackers to influence the victim's selection of routes or enable the denial-of-service attacks. In this model, we have discussed the security issues for MANETs. It
focuses on the security architecture. Since, every attack has own characteristics. One of the limitations of this model is that it works based on the assumption of malicious nodes, which do not work as a group. It may be happened in a real situation.

REFERENCES

Author’s information

G.Varaprasad received B.Tech in Computer Science and Engineering from Sri Venkateswara University, Tirupati in 1999 and M.Tech in Computer Science and Engineering from B.M.S. College of Engineering, Bangalore, in 2001 and PhD in Computer Networks from Anna University, Chennai, in 2005 and worked as a Postdoctoral fellow at Indian Institute of Science, Bangalore, in 2005. Currently, he is working as an Asst.Professor at B.M.S. College of Engineering, Bangalore. His areas of interests are MANET, SNMP and algorithms.

S. Dhanalakshmi received B.Sc. in Chemistry from University of Madras, Madras in 1995, Master of Computer Applications in Computer Applications from Bharathidasan University, Trichirappalli in 1998 and M.Phil. in Computer Science from Periyar University, Salem in 2004. Currently, she is working as a Senior Lecturer at Department of Computer Applications, Dr. Mahalingam College of Engineering and Technology, Pollachi. Her areas of interests are Computer Network and Mobile Communications.

M. Rajaram received B.E. in Electrical and Electronics Engineering from Madurai Kamaraj University, Madurai, in 1981, M.E in Power System Engineering from Bharathiyar University, Coimbatore in 1988 and PhD in the field of Control Systems from Bharathiyar University, Coimbatore, in 1993. Currently, he is working as an Assistant Professor in Department of EEE, Thanthai Periyar Govt. Institute of Technology, Vellore. His areas of interests are control systems and computer net works.