Quantification of Corneal Neovascularization via Contourlet Transform based Segmentation of Blood Vessels

Nesreen.A.Otoum, Eran.A.Edirisinghe
Department of Computer Science, Loughborough University, Loughborough, LE11 3TU, UK
N.otoum@lboro.ac.uk, E.A.Edirisinghe@lboro.ac.uk

ABSTRACT
The quantification of blood vessels provides the means for assessing the severity of corneal neovascularization and the impact of any treatment process being followed. In this paper we propose a Contourlet Transform based approach to the detection, enhancement and quantification of blood vessels in corneal images. Initially a semi-automated approach is used to identify the boundary of the cornea and to segment the corneal region of interest (ROI). This is followed by the application of Contourlet Transforms to the difference of red and green colour planes of the ROI, an image that produces fewer artefacts due to reflections and highlights. The blood vessel regions are subsequently enhanced in the Contourlet domain before being inverse transformed to obtain a corneal ROI with enhanced contrast. The enhanced image is finally thresholded to form a binary image which undergoes thinning to produce the final binary image. The quantification of the blood vessels is carried out by calculating the ratio between pixels belonging to the blood vessels and background areas. Experimental results on four practical data sets obtained from patients suffering from different levels of corneal neovascularization are provided.

Keywords: Contourlet Transform, corneal neovascularization, segmentation of blood vessels

1 INTRODUCTION
The normal cornea is devoid of both blood and lymphatic vessels (lymphatic vessels refer to the capillaries, collecting vessels, and trunks that collect lymph from the tissues and carry it to the blood stream). This avascularity (also termed the angiogenic privilege of the cornea) is highly conserved evolutionarily to maintain transparency and visual acuity. Nonetheless, because of a variety of severe inflammatory diseases, the cornea can become invaded by pathologic blood and lymphatic vessels. Pathologic corneal neovascularization (the excessive ingrowth of blood vessels from the limbal vascular plexus into the cornea, i.e., angiogenesis) not only reduces the quality of being able to see objects through the cornea (also called corneal transparency) but also is a major risk factor for corneal transplantation. In addition, host corneal neovascularization—both before as well as after surgery—is one of the most significant risk factors for subsequent immune rejections after replacing the damaged cornea with a clear cornea (corneal grafting). Thus timely and effective treatment of corneal neovascularization is important.

Quantification of corneal neovascularization provides means to monitor the effectiveness of any treatment process. To this affect many corneal imaging devices are capable of providing medical experts with high quality images that may be manually inspected and quantified. However, in severe cases of corneal neovascularization, manual inspection and quantification becomes an extremely tedious, time consuming task prone to human error (figure 1 Illustrates the difference between severe and minor cases in terms of number of the blood vessels growing within the cornea). Automated or semi-automated computer aided inspection and measurement provides a valuable and more accurate alternative approach.

Figure 1: Corneal Neovascularization (a) a severe case (b) a minor case.
Literature on the quantification of Corneal Neovascularization focuses more on the clinical analysis aspects and uses basic image processing tools that are implemented within standard imaging applications [1-7]. These include the separation of colour planes, noise removal, contrast adjustment, thresholding based image segmentation etc. The use of these tools requires considerable human intervention and trial and error testing for determining the best threshold values. Further, the segmentation accuracy will depend heavily on the image capture device and varying noise levels. On the other hand some promising approaches have been developed for the enhancement of blood vessels in retinal (i.e. back of the eye) imaging [8-13]. Our detailed study of using some of the key techniques adopted in retinal blood vessel (blood vessels that are present on the retina of the eye) enhancement in corneal blood vessel enhancement revealed that the differences of noise levels and the presence of bright reflections and acute variations in background illumination in the latter warrants new approaches to be developed and tested. In this paper we use an approach based on Contourlet Transform [14] which results in a local, flexible multi-resolution and directional image decomposition using contour segments. The directional nature of Contourlet Transforms allows for more accurate representation of contours, allowing their subsequent processing/enhancement to be done more efficiently. Given the fact that corneal blood vessels are of random shapes and orientations and are of varying scale and resolution, the use of Contourlet Transforms in their representation is further justified.

For clarity of presentation this paper is divided into four sections. Apart from section 1 that introduced the reader to the problem domain and gives an insight to existing solutions, section 2 presents the proposed approach. Section 3 provides experimental results and an analysis. Finally section 4 concludes with an insight to further possible directions of research.

2 Proposed Approach

2.1 An Overview

The quantification of corneal neovascularization requires the determination of the ratio between the total area occupied by the blood vessels and the total area of the cornea. This requires both the determination of the boundary of the cornea and the segmentation of all blood vessels. Although a number of automated corneal area segmentation algorithms have been proposed in literature under the present context of our research which focuses more on the accuracy of segmentation of blood vessels [15], we decided to use a semi-automated, accurate, corneal boundary segmentation approach. In this approach an initial elliptically shaped contour is adjusted manually by the user to register with the boundary of the cornea. Although this step requires manual intervention the process is easy and is worth the effort due to the difficulty of automatically detecting the accurate shape of a corneal boundary using any existing image processing approach.

Figure 2: Semi-automated Segmentation of the Cornea (a) initial ellipse automatically drawn within the cornea (b) manually adjusted ellipse to coincide with the corneal boundary.

Figure 2 illustrates the steps that are followed in the semi-automated segmentation of the cornea. In the initial stage an ellipse is drawn which has dimensions along the minor and major axes, approximately equal to half of the radius of circular edge (determined by a Canny edge detector with appropriate threshold settings) of the cornea. The system then allows the user to move the boundary and the entire elliptical shape, to enable its boundary’s best alignment with that of the corneal boundary.

Once the corneal image is segmented as described above it undergoes a number of stages of processing as illustrated by the high level block diagram of figure 3.

Figure 3: Proposed approach to corneal neovascularization.

The contrast enhancement and noise removal are both done within a Contourlet Transform domain processing procedure described in section 2.2. As a result of this stage the contrast of the blood vessels of the corneal image is enhanced. Further noise and non-uniform background illumination is minimized. This allows the simple thresholding based blood vessel extraction algorithm to perform accurately. The final quantification stage quantifies the total area occupied by the blood vessels.
2.2 Contrast Enhancement and Noise Removal

Figure 4 illustrates a detailed block diagram of the stages involved within this phase of the proposed approach to the quantification of corneal neovascularization. The subsequent sections provide more details of each important sub-stage.

Subsequent to the formation of the difference image contrast stretching can be used to improve the contrast further. This involves the determination of the highest pixel value and re-mapping it to 255 and the determination of the lowest pixel value and re-mapping it to 0.

2) Contourlet transform: In general the application of Contourlet Transform to an image involves two stages. A Laplacian pyramid is first used to capture point discontinuities followed by the application of a directional filter bank to link point discontinuities into a linear structure (see equation (2) and (3), point 4, and section 2.2).

Figure 6 illustrates the use of filters in forming a Laplacian pyramid. Note the generation of a down sampled lowpass version of the original image and the difference between the original and the prediction.

The overall result is thus an image expansion using basic elements such as contour segments and is hence named a Contourlet.

Figure 7 illustrates the Contourlet decomposition [14] of a typical corneal image with neovascularization. The specific decomposition illustrated represents a two level decomposition with the first level illustrating four directions and the second level illustrating eight directions. It is noted that blood vessels are represented in their parts within the various sub-bands of decomposition.

3) Contourlet based image enhancement: A closer look at the difference image between the red and the green colour planes reveals blood vessels of different luminosity. The vessels having high contrast to the background (bright) are easy to detect but the vessels having low contrast to the background will be more difficult to segment. The approach proposed attempts soften the stronger edges and amplify the faint edges so that the slim vessels will become visible. This is done as follows:

After the decomposition of the image into contourlet coefficients (i.e. the values that result from the transformation of pixel values, when a Contourlet Transform is applied to the corneal image) they are modified via a non-linearity function $y = \alpha$ defined below.
Note that taking noise into consideration we have adopted a noise standard deviation σ in the equation (see point 4 in section 2.2).

\begin{align*}
y_a(x,\sigma) &= 1 & \text{if } x < a\sigma \\
y_a(x,\sigma) &= \frac{x - a\sigma}{\sigma} \left(\frac{m}{\sigma} \right)^p + \frac{2a\sigma - x}{\sigma} & \text{if } a\sigma \leq x < 2a\sigma \\
y_a(x,\sigma) &= \left(\frac{m}{x} \right)^p & \text{if } 2a\sigma \leq x < m \\
y_a(x,\sigma) &= \left(\frac{m}{x} \right)^p & \text{if } x \geq m
\end{align*}

(1)

In the above equations, m determines the degree of nonlinearity. s introduces dynamic range compression. Using a nonzero s will enhance the weaker edges and soften the stronger edges. a is a normalization parameter. Parameter m is the value under which coefficients are amplified. It is obviously dependent on the values of pixels. There are two possible options to derive the value of m,

- $m = K_m\sigma$, which m is derived from the noise standard deviation by using parameter K_m. K_m is independent of the Contourlet coefficient values and quite easy for users to set. When $a=3$, $K_m=10$, all coefficients can be amplified between 3 and 30.
- $m = l M_a$, which m is derived from the maximum Contourlet coefficient M_a of the relative sub-band. l must be less than 1. In this case, choosing for instance $a=3$ $l=0.5$, we amplify all coefficients with an absolute value between 3σ and half the maximum absolute value of the sub-band.

The first option allows the user to define the coefficients to be amplified as a function of their signal to noise ratio, while the second choice gives a general and easy way to fix the parameter m independently of the range of the pixel values.

4) Estimation of noise standard deviation σ

Estimation of the amount of noise is crucial in many algorithms for digital image analysis. This enables algorithm to adapt to the noise instead of following fixed thresholds. There are a number of standard approaches one can use to estimate the noise variance. Since image structures like edges have strong second order differential components, a noise estimator should be insensitive to the Laplacian of an image.
One of the estimation methods is to suppress the image structure by Laplace masks \[17\].

The Laplacian of an image \(f \) can be defined as follows:

\[
\nabla^2 f = \frac{\partial^2 f}{\partial x^2} + \frac{\partial^2 f}{\partial y^2}
\]

(2)

\[
\nabla^2 f = f(x+1,y) + f(x-1,y) + f(x,y+1) + f(x,y-1) - 4f(x,y)
\]

(3)

Immerker in \[18\] suggests using the difference between two templates \(L_1 \) and \(L_2 \), approximating the Laplacian of an image in discrete format. The two masks are as follows:

\[
L_1 = \begin{bmatrix}
0 & 1 & 0 \\
1 & -4 & 1 \\
0 & 1 & 0
\end{bmatrix}, \quad L_2 = \frac{1}{2} \begin{bmatrix}
1 & 0 & 1 \\
0 & -4 & 0 \\
1 & 0 & 1
\end{bmatrix}
\]

(4)

The noise estimation operator \(M \) is represented by the difference between the two masks above:

\[
M = 2(L_2 - L_1) = \begin{bmatrix}
1 & -2 & 1 \\
-2 & 4 & -2 \\
1 & -2 & 1
\end{bmatrix}
\]

(5)

which has zero mean and variance

\[
(4^2 + 4 \cdot (-2)^2 + 4 \cdot 1^2)\sigma_n^2 = 36\sigma_n^2
\]

(6)

assuming that the noise at each pixel has a standard deviation \(\sigma_n \). Assume \(f(x, y) \ast M \) denotes the value of applying the mask \(M \) at position \((x, y) \) in the image \(f \). Computing the variance of the output of the \(M \) operator applied to the image \(f \) will give an estimate of \(36\sigma_n^2 \) at each pixel, which can be averaged over the image \(f \) or local neighbourhoods to give an estimate of the noise variance \(\sigma_n^2 \). The variance of the noise in \(f \) can be obtained as,

\[
\sigma_n^2 = \frac{1}{36(W-2)(H-2)} \sum_{x,y} (f(x, y) \ast M)^2
\]

(7)

Where \(W \) and \(H \) represent the width and height of image \(f \), \(\ast \) is the time domain convolution.

To obtain the absolute deviation from the variance above, assuming Gaussian distribution with zero mean and variance \(\sigma_n^2 \), the deviation is

\[
\int_{-\infty}^{\infty} |t| \frac{1}{\sqrt{2\pi\sigma_n^2}} \exp\left(-\frac{t^2}{2\sigma_n^2}\right) dt = \sqrt{\frac{2}{\pi}} \sigma_n
\]

(8)

Then,

\[
\sigma = \sqrt{\frac{\pi}{2}} \int_{-\infty}^{\infty} |t| \frac{1}{\sqrt{2\pi\sigma}} \exp\left(-\frac{t^2}{2\sigma^2}\right) dt
\]

(9)

From above, we can obtain \(\sigma_n \), which is the standard deviation of noise from the variance \(\sigma_n^2 \)

\[
\sigma_n = \sqrt{\frac{\pi}{2} \frac{1}{6(W-2)(H-2)}} \sum_{x,y} |f(x, y) \ast M|
\]

(10)

5) Inverse Contourlet transform: Once the coefficients have been modified following the above procedure the inverse contourlet transform is used to obtain the enhanced image. Figure 8 illustrates a typical example.

![Figure 8: The difference between the red and green component images (a) before application (b) after application, of contourlet based enhancement.](www.ubicc.org)

6) Contrast enhancement filter: The following 2-D filter was applied on the output of the previous step (Inverse contourlet transform)

\[
\frac{1}{(a+1)} \begin{bmatrix}
-a & a-1 & -a \\
-a & a+5 & a-1 \\
-a & a-1 & -a
\end{bmatrix}
\]

(11)

2.3 Segmentation

After the images have been enhanced following the procedure described in 2.2 we use a simple thresholding based approach to segment the blood vessels (Note – experimental selection of threshold that results in the best perceptual results). In doing so we create a binary image with 0 (black) representing pixel values outside the blood vessels and 255 (white) representing pixel values belonging to the blood vessels.

Figure 9 illustrates the resulting blood vessel segmentation obtained by following the contrast enhancement procedure described in 2.2
2.4 Thinning

We applied a standard Thinning approach [19] to make the blood vessels more analogous to the ones on the original image. The algorithm can be described as follows:

In the thinning approach used the deletion or retention of a (white) pixel \(p \) depends on a number of conditions (\(G1, G2 \) and \(G2 \) defined below) and iterations.

After dividing the image into two distinct subfields, in the first sub-iteration, if and only if conditions \(G1, G2 \) and \(G3 \) are all satisfied pixel \(p \) would be deleted from the first subfield.

In the second sub-iteration, if and only if conditions \(G1, G2 \) and \(G3' \) are all satisfied pixel \(p \) would be deleted from the second subfield. [19]

Condition \(G1 \):

\[
X_H(p) = 1
\]
(12)

Where

\[
X_H(p) = \sum_{i=1}^{4} b_i
\]

\[
b_i = \begin{cases}
1, & \text{if } x_{2i-1} = 0 \text{ and } (x_{2i} = 1 \text{ or } x_{2i-1} = 1) \\
0, & \text{otherwise}
\end{cases}
\]
(13)

Condition \(G2 \):

\[
2 \leq \min[n_1(p), n_2(p)] \leq 3
\]
(14)

Where

\[
n_1(p) = \sum_{k=1}^{4} x_{2k-1} \lor x_{2k}
\]

\[
n_2(p) = \sum_{k=1}^{4} x_{2k} \lor x_{2k+1}
\]
(15)

\[
\begin{align*}
(x_2 \lor x_3 \lor \overline{x_4}) \land x_1 & = 0 \quad (16) \\
(x_5 \lor x_7 \lor \overline{x_4}) \land x_3 & = 0 \quad (17)
\end{align*}
\]

2.5 Quantification

For each image the total amount of pixels belonging to the entire corneal area and the total amount of pixels belonging to the blood vessels are calculated. The first figure is calculated by adding up the number of pixels within the corneal boundary, regardless of its colour and the second figure is calculated by totalling up the white pixels within the boundary of the image. The percentage ratio between the total number of pixels located within the corneal blood vessels and the cornea is finally calculated.

3 Experimental Results & Analysis

Experiments were performed on a set of forty images with various degrees of corneal neovascularization. All algorithms were implemented with Maltab. The results for six test images are illustrated in Figure 11. The images in figure 11 have been arranged in descending order of the degree of corneal neovascularization. The results illustrate the capability of the proposed approach to enhance the blood vessels before segmentation, making the quantifications more accurate.

Table-1 tabulates the quantification results for the selected set of six test images.

<table>
<thead>
<tr>
<th>Image</th>
<th>Threshold</th>
<th>Cornea area</th>
<th>Vessel area</th>
<th>Ratio %</th>
</tr>
</thead>
<tbody>
<tr>
<td>Image 1</td>
<td>35</td>
<td>196022</td>
<td>72491</td>
<td>36.9</td>
</tr>
<tr>
<td>Image 2</td>
<td>39</td>
<td>190582</td>
<td>60734</td>
<td>31.9</td>
</tr>
<tr>
<td>Image 3</td>
<td>40</td>
<td>195034</td>
<td>55448</td>
<td>28.4</td>
</tr>
<tr>
<td>Image 4</td>
<td>35</td>
<td>197199</td>
<td>51138</td>
<td>25.9</td>
</tr>
<tr>
<td>Image 5</td>
<td>70</td>
<td>186190</td>
<td>42728</td>
<td>22.9</td>
</tr>
<tr>
<td>Image 6</td>
<td>135</td>
<td>157139</td>
<td>13374</td>
<td>8.5</td>
</tr>
</tbody>
</table>

Table 1: Quantification results
To investigate the practical usefulness of the proposed quantification approach, further experiments were performed on corneal images of two patients, one who had undergone corneal grafting and another who had been undergoing medical treatment, over a period of time. For the initial case the data was recorded over a three year period and for the latter case the data recording took over a period of seven months. Figure 12 illustrates sequential images for the patient who had undergone corneal grafting and figure 13 illustrates sequential images for the patient who has been undergoing medical treatment. Charts 1 and 2 illustrate graphs demonstrating the healing progression for the patients. The progression of healing is well demonstrated by the graphs. This information will be vital to medical experts in monitoring patient care and evaluating the effect of different ways of treating corneal neovascularization.

A closer investigation of the test image (2) and (4) of figure 11 illustrates that the proposed approach is also able to remove the consideration of suture marks that are present in the original image due to surgical intervention. Further, the approach has been able to perform remarkably well in the presence of significant effects of non-uniform illumination and reflections.

In general the experimental results indicate that the directional nature of Contourlet Transforms allows for more accurate representation of the blood vessels, allowing their subsequent processing/enhancement to be done more efficiently. Given the fact that corneal blood vessels are of random shapes and orientations and are of varying scale and resolution, the use of Contourlet Transforms in their representation is thus justified.

4 Conclusions

We have proposed an efficient computer aided approach to the quantification of corneal neovascularization. The approach is based on the use of Contourlet Transforms to enhance the blood vessels before their segmentation is carried out. A special feature of the approach is that it is robust to different levels of noise that may be present in corneal images. We have shown that the proposed approach is capable of performing effectively in the presence of noise, non-uniform illumination and reflections. Quantifications experiments were done on four corneal images and the performance of the algorithms were analysed at various stages. At present we are working on making the proposed approach fully automated by introducing an efficient and robust approach to the determination of corneal boundary and the determination of thresholding values used in the final stage of segmentation.
Figure 12: Results for a patient who has undergone corneal drafting. [Note: each column indicates the year of data capture] (a) Original Images. (b) Binary images after segmentation.

Chart 1: The healing progression of the cornea of the patient who had undergone corneal grafting.
Figure 13: Results for the patient who has been undergoing medical treatment. [Note: each column indicates the month and year of data capture. Only three out of the seven samples are illustrated above] (a) Original Images (b) binary images after segmentation

Chart 2: The healing progression of the cornea of the patient who had been undergoing medical treatment.
Acknowledgment

The authors would like to extend their gratitude to Prof. H. Dua and Ms L. Faraj, Queens Medical Centre, Nottingham University, UK for their support and advice.

5 References

Nesreen Otoum received her BSc degree in Management Information Science from Philadelphia University, Jordan in August 2007. In December 2008 she obtained her MSc degree in Internet Computing and Network security from Loughborough University. Her MSc project was titled "Error Concealment for H.264/AVC": video coding. Her PhD work is focused on developing novel algorithm for medical image processing and analysis. Her research interests include medical image analysis, image pre-processing, object recognition, classification techniques and visual effects. She is a member of the UbiCC Journal
Digital Imaging Research Group (DIRG), Loughborough University, UK.

Eran A Edirisinghe received his B.Sc.Eng degree from University of Moratuwa, Sri Lanka in 1995, his MSc and PhD degrees from Loughborough University UK in 1996 and 1999. He joined as a lecturer of the Department of Computer Science, Loughborough University and was promoted to the Reader in Digital Imaging in 2008. He is at present the Director of Research of the Department of Computer Science, Loughborough University and the Head of the Digital Imaging Research Group. He is currently supervising a team of 18 PhD students and post-doctoral research students working in the areas of image processing, coding and mobile application development. His research has been substantially funded by the UK industry, government and the research council, EPSRC.